Robotics

Efforts to deliver the first drone-based, mobile quantum network

Hacked bank and Twitter accounts, malicious power outages and attempts to tamper with medical records threaten the security of the nation's health, money, energy, society and infrastructure. Harnessing the laws of nature—namely ...

Electronics & Semiconductors

Smart textiles made possible by flexible transmission lines

EPFL researchers have developed electronic fibers that, when embedded in textiles, can be used to collect data about our bodies by measuring fabric deformation. Their technology employs flexible transmission lines and offers ...

Electronics & Semiconductors

New technique may enable all-optical data-center networks

A new technique that synchronizes the clocks of computers in under a billionth of a second can eliminate one of the hurdles for the deployment of all-optical networks, potentially leading to more efficient data centers, according ...

Internet

Undersea cables are the unseen backbone of the global internet

Have you ever wondered how an email sent from New York arrives in Sydney in mere seconds, or how you can video chat with someone on the other side of the globe with barely a hint of delay? Behind these everyday miracles lies ...

Electronics & Semiconductors

Light meets superconducting circuits

In the last few years, several technology companies including Google, Microsoft, and IBM, have massively invested in quantum computing systems based on microwave superconducting circuit platforms in an effort to scale them ...

page 4 from 6

Optical fiber

An optical fiber (or fibre) is a glass or plastic fiber that carries light along its length. Fiber optics is the overlap of applied science and engineering concerned with the design and application of optical fibers. Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher bandwidths (data rates) than other forms of communications. Fibers are used instead of metal wires because signals travel along them with less loss, and they are also immune to electromagnetic interference. Fibers are also used for illumination, and are wrapped in bundles so they can be used to carry images, thus allowing viewing in tight spaces. Specially designed fibers are used for a variety of other applications, including sensors and fiber lasers.

Light is kept in the core of the optical fiber by total internal reflection. This causes the fiber to act as a waveguide. Fibers which support many propagation paths or transverse modes are called multi-mode fibers (MMF), while those which can only support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a larger core diameter, and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 550 metres (1,800 ft).

Joining lengths of optical fiber is more complex than joining electrical wire or cable. The ends of the fibers must be carefully cleaved, and then spliced together either mechanically or by fusing them together with an electric arc. Special connectors are used to make removable connections.

This text uses material from Wikipedia, licensed under CC BY-SA