Hi Tech & Innovation

Keeping drivers safe with a road that can melt snow, ice on its own

Slipping and sliding on snowy or icy roads is dangerous. Salt and sand help melt ice or provide traction, but excessive use is bad for the environment. And sometimes, a surprise storm can blow through before these materials ...

Energy & Green Tech

Flameproofing lithium-ion batteries with salt

Rechargeable lithium-ion batteries power phones, laptops, other personal electronics and electric cars, and are even used to store energy generated by solar panels. But if the temperature of these batteries rises too high, ...

Robotics

Robo-bug: A rechargeable, remote-controllable cyborg cockroach

An international team led by researchers at the RIKEN Cluster for Pioneering Research (CPR) has engineered a system for creating remote controlled cyborg cockroaches, equipped with a tiny wireless control module that is powered ...

Electronics & Semiconductors

Uncovering the secret of ternary polymer solar cell success

Solar cells will doubtless play a significant part in a sustainable energy future. Polymer solar cells (PSCs) specifically provide an excellent option because they are cheap to produce and can be both flexible and semitransparent. ...

Engineering

A stretchy display for shapable electronics

No one would ever imagine crumpling up their smartphone, television or another electronic device. Today's displays—which are flat, rigid and fragile—lack the ability to reshape to interactively respond to users.

page 3 from 8

Polymer

A polymer (from Greek πολύ-ς /po΄li-s/ much, many and μέρος /΄meros/ part) is a large molecule (macromolecule) composed of repeating structural units typically connected by covalent chemical bonds. While polymer in popular usage suggests plastic, the term actually refers to a large class of natural and synthetic materials with a variety of properties.

Due to the extraordinary range of properties accessible in polymeric materials , they have come to play an essential and ubiquitous role in everyday life - from plastics and elastomers on the one hand to natural biopolymers such as DNA and proteins that are essential for life on the other. A simple example is polyethylene, whose repeating unit is based on ethylene (IUPAC name ethene) monomer. Most commonly, as in this example, the continuously linked backbone of a polymer consists mainly of carbon atoms. However, other structures do exist; for example, elements such as silicon form familiar materials such as silicones, examples being silly putty and waterproof plumbing sealant. The backbone of DNA is in fact based on a phosphodiester bond, and repeating units of polysaccharides (e.g. cellulose) are joined together by glycosidic bonds via oxygen atoms.

Natural polymeric materials such as shellac, amber, and natural rubber have been in use for centuries. Biopolymers such as proteins and nucleic acids play crucial roles in biological processes. A variety of other natural polymers exist, such as cellulose, which is the main constituent of wood and paper.

The list of synthetic polymers includes synthetic rubber, Bakelite, neoprene, nylon, PVC, polystyrene, polyacrylonitrile, PVB, silicone, and many more.

Polymers are studied in the fields of polymer chemistry, polymer physics, and polymer science.

This text uses material from Wikipedia, licensed under CC BY-SA