Engineering

Researchers reverse the flow of time on IBM's quantum computer

We all mark days with clocks and calendars, but perhaps no timepiece is more immediate than a mirror. The changes we notice over the years vividly illustrate science's "arrow of time"—the likely progression from order to ...

Computer Sciences

Is quantum computing a cybersecurity threat?

Cybersecurity researchers and analysts are rightly worried that a new type of computer, based on quantum physics rather than more standard electronics, could break most modern cryptography. The effect would be to render communications ...

Computer Sciences

First proof of quantum computer advantage

For many years, quantum computers were not much more than an idea. Today, companies, governments and intelligence agencies are investing in the development of quantum technology. Robert König, professor for the theory of ...

Computer Sciences

How to build a computer with free will

Do you have free will? Can you make your own decisions? Or are you more like an automaton, just moving as required by your constituent parts? Probably, like most people, you feel you have something called free will. Your ...

Hi Tech & Innovation

IBM announces cloud-based quantum computing platform

(Tech Xplore)—IBM has announced the development of a quantum computing platform that will allow users to access and program its 5 qubit quantum computer over the Internet. Called the IBM Quantum Experience, it is, the company ...

Computer Sciences

Google's researchers explore quantum annealing advantages

Since 2013, Google and NASA have worked on code designed for a quantum machine bought from D-Wave. Google Research Blog said Tuesday that Quantum AI lab researchers report in a new paper that has yet to be peer-reviewed that ...

page 3 from 3

Quantum mechanics

Quantum mechanics is a set of principles underlying the most fundamental known description of all physical systems at the submicroscopic scale (at the atomic level). Notable among these principles are simultaneous wave-like and particle-like behavior of matter and radiation ("Wave–particle duality"), and the prediction of probabilities in situations where classical physics predicts certainties. Classical physics can be derived as a good approximation to quantum physics, typically in circumstances with large numbers of particles. Thus quantum phenomena are particularly relevant in systems whose dimensions are close to the atomic scale, such as molecules, atoms, electrons, protons and other subatomic particles. Exceptions exist for certain systems which exhibit quantum mechanical effects on macroscopic scale; superfluidity is one well-known example. Quantum theory provides accurate descriptions for many previously unexplained phenomena such as black body radiation and stable electron orbits. It has also given insight into the workings of many different biological systems, including smell receptors and protein structures.

This text uses material from Wikipedia, licensed under CC BY-SA