Computer Sciences

Machine learning tool sorts the nuances of quantum data

An interdisciplinary team of Cornell and Harvard University researchers developed a machine learning tool to parse quantum matter and make crucial distinctions in the data, an approach that will help scientists unravel the ...

Electronics & Semiconductors

Logical switching using one single molecule

Logic gates, the basic elements of the digital world, can now be built using one single molecule. An example is XOR, with two inputs. If at least one of them is "1," then the output is "1," as well; otherwise, it is 0. These ...

Engineering

Using quantum physics to secure wireless devices

From access cards and key fobs to Bluetooth speakers, the security of communication between wireless devices is critical to maintaining privacy and preventing theft. Unfortunately, these tools are not foolproof and information ...

Engineering

Tiny, cheap solution for quantum-secure encryption

It's fairly reasonable to assume that an encrypted email can't be seen by prying eyes. That's because in order to break through most of the encryption systems we use on a day-to-day basis, unless you are the intended recipient, ...

page 9 from 21

Quantum

In physics, a quantum (plural: quanta) is an indivisible entity of a quantity that has the same units as the Planck constant and is related to both energy and momentum of elementary particles of matter (called fermions) and of photons and other bosons. The word comes from the Latin "quantus", for "how much." Behind this, one finds the fundamental notion that a physical property may be "quantized", referred to as "quantization". This means that the magnitude can take on only certain discrete numerical values, rather than any value, at least within a range. There is a related term of quantum number.

A photon is often referred to as a "light quantum". The energy of an electron bound to an atom (at rest) is said to be quantized, which results in the stability of atoms, and of matter in general. But these terms can be a little misleading, because what is quantized is this Planck's constant quantity whose units can be viewed as either energy multiplied by time or momentum multiplied by distance.

Usually referred to as quantum "mechanics", it is regarded by virtually every professional physicist as the most fundamental framework we have for understanding and describing nature at the infinitesimal level, for the very practical reason that it works. It is "in the nature of things", not a more or less arbitrary human preference.

This text uses material from Wikipedia, licensed under CC BY-SA