Robotics

Efforts to deliver the first drone-based, mobile quantum network

Hacked bank and Twitter accounts, malicious power outages and attempts to tamper with medical records threaten the security of the nation's health, money, energy, society and infrastructure. Harnessing the laws of nature—namely ...

Computer Sciences

Observing time crystals on a quantum computer

When you hear the words "time crystal" you could be forgiven for imagining something fantastic like a magic crystal ball or a device for time travel. But time crystals are very real, although they are a bit like magic.

Software

CT analysis of concrete beams

Concrete's properties as a material have made it an essential part of today's construction methods. Alongside its many advantages, however, this universal favorite has its share of drawbacks—the most prominent being that ...

Telecom

European software-defined satellite starts service

A telecommunications satellite that can be reprogrammed in orbit, offering unprecedented mission reconfiguration capacity, has successfully passed its in-orbit acceptance review.

Engineering

Researchers discover novel quantum effect in bilayer graphene

Theorists at The University of Texas at Dallas, along with colleagues in Germany, have for the first time observed a rare phenomenon called the quantum anomalous Hall effect in a very simple material. Previous experiments ...

page 17 from 21

Quantum

In physics, a quantum (plural: quanta) is an indivisible entity of a quantity that has the same units as the Planck constant and is related to both energy and momentum of elementary particles of matter (called fermions) and of photons and other bosons. The word comes from the Latin "quantus", for "how much." Behind this, one finds the fundamental notion that a physical property may be "quantized", referred to as "quantization". This means that the magnitude can take on only certain discrete numerical values, rather than any value, at least within a range. There is a related term of quantum number.

A photon is often referred to as a "light quantum". The energy of an electron bound to an atom (at rest) is said to be quantized, which results in the stability of atoms, and of matter in general. But these terms can be a little misleading, because what is quantized is this Planck's constant quantity whose units can be viewed as either energy multiplied by time or momentum multiplied by distance.

Usually referred to as quantum "mechanics", it is regarded by virtually every professional physicist as the most fundamental framework we have for understanding and describing nature at the infinitesimal level, for the very practical reason that it works. It is "in the nature of things", not a more or less arbitrary human preference.

This text uses material from Wikipedia, licensed under CC BY-SA