Electronics & Semiconductors

Why the semiconductor shortage won't end soon

Your smartphone? It runs on a semiconductor. The innards of your PlayStation? It runs on a semiconductor. The display in your car? Yes, that too runs on a semiconductor.

Electronics & Semiconductors

Microchips of the future: Suitable insulators are still missing

For decades, there has been a trend in microelectronics towards ever smaller and more compact transistors. 2D materials such as graphene are seen as a beacon of hope here: they are the thinnest material layers that can possibly ...

Business

How the world ran out of semiconductors

There's a global shortage in semiconductors, and it's becoming increasingly serious. The US is currently reviewing of its supply of the technology, following a landmark executive order from President Joe Biden.

Business

Biden plans executive order after semiconductor crunch

The Biden administration is assessing immediate steps to address the semiconductor shortage and plans an executive order to shore up critical supply chain items, a White House spokeswoman said Thursday.

page 29 from 36

Semiconductor

A semiconductor is a material that has a resistivity value between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical field. Devices made from semiconductor materials are the foundation of modern electronics, including radio, computers, telephones, and many other devices. Semiconductor devices include the transistor, solar cells, many kinds of diodes including the light-emitting diode, the silicon controlled rectifier, and digital and analog integrated circuits. Solar photovoltaic panels are large semiconductor devices that directly convert light energy into electrical energy. In a metallic conductor, current is carried by the flow of electrons. In semiconductors, current can be carried either by the flow of electrons or by the flow of positively-charged "holes" in the electron structure of the material.

Silicon is used to create most semiconductors commercially. Dozens of other materials are used, including germanium, gallium arsenide, and silicon carbide. A pure semiconductor is often called an “intrinsic” semiconductor. The conductivity, or ability to conduct, of semiconductor material can be drastically changed by adding other elements, called “impurities” to the melted intrinsic material and then allowing the melt to solidify into a new and different crystal. This process is called "doping".

This text uses material from Wikipedia, licensed under CC BY-SA