Engineering

A new solid-state battery surprises the researchers who created it

Engineers created a new type of battery that weaves two promising battery sub-fields into a single battery. The battery uses both a solid state electrolyte and an all-silicon anode, making it a silicon all-solid-state battery. ...

Hardware

Reappraisal of Moore's law through chip density

Researchers at The Rockefeller University have shed new light on Moore's Law—perhaps the world's most famous technological prediction—that chip density, or the number of components on an integrated circuit, would double ...

Energy & Green Tech

An effective and low-cost solution for storing solar energy

How can we store solar energy for period when the sun doesn't shine? One solution is to convert it into hydrogen through water electrolysis. The idea is to use the electrical current produced by a solar panel to 'split' water ...

Electronics & Semiconductors

Researchers isolate single artificial atoms in silicon

Silicon has proved to be a highly valuable and reliable material for fabricating a variety of technologies, including quantum devices. In recent years, researchers have also been investigating the possible advantages of using ...

Energy & Green Tech

Silicon heterojunction solar cells with up to 26.81% efficiency

Solar energy is the cheapest and most accessible form of energy. Now, it promises to be more efficient than ever. Scientists from a Chinese solar technology company have developed a new type of solar cell that could be a ...

page 2 from 40

Silicon

Silicon (pronounced /ˈsɪlɨkən/ or /ˈsɪlɨkɒn/, Latin: silicium) is the most common metalloid. It is a chemical element, which has the symbol Si and atomic number 14. The atomic mass is 28.0855. A tetravalent metalloid, silicon is less reactive than its chemical analog carbon. As the eighth most common element in the universe by mass, silicon very rarely occurs as the pure free element in nature, but is more widely distributed in dusts, planetoids and planets as various forms of silicon dioxide (silica) or silicates. On Earth, silicon is the second most abundant element (after oxygen) in the crust, making up 25.7% of the crust by mass.

Silicon has many industrial uses. It is the principal component of most semiconductor devices, most importantly integrated circuits or microchips. Silicon is widely used in semiconductors because it remains a semiconductor at higher temperatures than the semiconductor germanium and because its native oxide is easily grown in a furnace and forms a better semiconductor/dielectric interface than any other material.

In the form of silica and silicates, silicon forms useful glasses, cements, and ceramics. It is also a constituent of silicones, a class-name for various synthetic plastic substances made of silicon, oxygen, carbon and hydrogen, often confused with silicon itself.

Silicon is an essential element in biology, although only tiny traces of it appear to be required by animals. It is much more important to the metabolism of plants, particularly many grasses, and silicic acid (a type of silica) forms the basis of the striking array of protective shells of the microscopic diatoms.

This text uses material from Wikipedia, licensed under CC BY-SA