Engineering

New material will make locally flexible diodes possible

Diodes allow directed flows of current. Without them, modern electronics would be inconceivable. Until now, they had to be made out of two materials with different characteristics. A research team at the Technical University ...

Energy & Green Tech

Increased spacing of solar panels comes with benefits

Moving rows of solar panels farther apart can increase efficiency and improve economics in certain instances by allowing greater airflow to whisk away some heat, according to a new analysis.

Engineering

Discovery of exciton pairs could enable next-gen technology

Electrical engineers from The Australian National University (ANU) have demonstrated how to create exciton pairs in a new type of semiconductor structure, paving the way for next generation technologies required for high ...

Electronics & Semiconductors

Exploring Europa possible with silicon-germanium transistor technology

Europa is more than just one of Jupiter's many moons—it's also one of most promising places in the solar system to look for extraterrestrial life. Under 10 kilometers of ice is a liquid water ocean that could sustain life. ...

page 20 from 40

Temperature

In physics, temperature is a physical property of a system that underlies the common notions of hot and cold; something that feels hotter generally has the higher temperature. Temperature is one of the principal parameters of thermodynamics. If no heat flow occurs between two objects, the objects have the same temperature; otherwise heat flows from the hotter object to the colder object. This is the content of the zeroth law of thermodynamics. On the microscopic scale, temperature can be defined as the average energy in each degree of freedom in the particles in a system. Because temperature is a statistical property, a system must contain a few particles for the question as to its temperature to make any sense. For a solid, this energy is found in the vibrations of its atoms about their equilibrium positions. In an ideal monatomic gas, energy is found in the translational motions of the particles; with molecular gases, vibrational and rotational motions also provide thermodynamic degrees of freedom.

Temperature is measured with thermometers that may be calibrated to a variety of temperature scales. In most of the world (except for Belize, Myanmar, Liberia and the United States), the Celsius scale is used for most temperature measuring purposes. The entire scientific world (these countries included) measures temperature using the Celsius scale and thermodynamic temperature using the Kelvin scale, which is just the Celsius scale shifted downwards so that 0 K= −273.15 °C, or absolute zero. Many engineering fields in the U.S., notably high-tech and US federal specifications (civil and military), also use the kelvin and degrees Celsius scales. Other engineering fields in the U.S. also rely upon the Rankine scale (a shifted Fahrenheit scale) when working in thermodynamic-related disciplines such as combustion.

This text uses material from Wikipedia, licensed under CC BY-SA