AI could transform how we monitor the structural health of civil infrastructure

bridge
Credit: CC0 Public Domain

The University of Surrey and King's College London have developed a new machine learning algorithm (AI) that could transform the way we monitor major infrastructure—such as dams and bridges.

In a paper published by the journal Structural Health Monitoring, researchers from Surrey and Kings detail how they created an AI system named SHMnet to analyze and assess the damage of bolt connections used in metallic structures.

Built on the foundations of a modified Alex-Net neural network, the research team set up an impact hammer under lab conditions and tasked SHMnet with accurately identifying the subtle condition changes of connection bolts on a steel frame under 10 damage scenarios.

The team found that when SHMnet is trained using four repeated datasets, it had a flawless (100 percent) identification record in their tests.

Dr. Ying Wang, the corresponding author of the paper and Assistant Professor at the University of Surrey, said:

"The performance of our suggests that SHMnet could be incredibly useful to , governments and other organizations tasked with monitoring the integrity of bridges, towers, dams and other metal structures.

"While there is more to do, such as testing SHMnet under different vibration conditions and obtaining more , the real test is for this system to be used in the field where a reliable, accurate and affordable way of monitoring infrastructure is sorely needed."


Explore further

How machine learning helped develop a new algorithm that could add life to bridges

More information: Tong Zhang et al. SHMnet: Condition assessment of bolted connection with beyond human-level performance, Structural Health Monitoring (2019). DOI: 10.1177/1475921719881237
Citation: AI could transform how we monitor the structural health of civil infrastructure (2019, November 18) retrieved 5 December 2019 from https://techxplore.com/news/2019-11-ai-health-civil-infrastructure.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
11 shares

Feedback to editors

User comments