Ionophobic electrode boosts energy storage performance

Ionophobic electrode boosts energy storage performance
Diagram showing ionophilic and ionophobic pore mechanisms and their influence on charging dynamics. Credit: IPE

Using renewable energy to replace fossil energy is now considered the best solution for greenhouse gas emission and air pollution problems. As a result, the demand for new and better energy storage technology is strong.

As part of the effort to improve this technology, a group led by Prof. Zhang Suojiang from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences (CAS) recently found that ionophobic electrodes can boost storage performance.

Their study was published in the Journal of Materials Chemistry A on May 8.

Electric Double-Layer Capacitors (EDLCs) with (ILs)—as a new type of energy storage device—can fill the gap between the power density of batteries and the energy density of conventional capacitors. However, ILs in nanopores often exhibit sluggish diffusion dynamics, which hinder high power density.

In this study, the researchers proposed a new strategy to synergistically improve the energy density and power of EDLCs with ILs based on massive molecular dynamics simulations.

They constructed a series of EDLCs with different wettability (from ionophilic to ionophobic), using the electrolyte 1-ethyl-3-methylimidazolium tetrafluoroborate.

When comparing EDLCs with an ionophilic to EDLCs with an extremely ionophobic electrode, the researchers found that the charging time for the latter decreased by ~80% while the capacitance increased by nearly 100% (at U = 4V).

For EDLCs with an ionophobic electrode, ILs cannot spontaneously enter into the porous electrode without charging. With the increase in charging voltage, both the counter ion and co-ion will start to enter the nanopore when the voltage is beyond one critical value (~2 V). At the same time, the diffusion dynamics of ions are faster than the bulk ILs due to the sparsity of ions in the pore.

"Charging the ionophobic pore is like compressing a spring. Once the spring is released, much energy will be generated," said Prof. He Hongyan from IPE.

This study also identified the quantitative relationship between charging time/capacitance and ionophobic property/pore geometry/. It revealed how abnormal co-ion adsorption, which does not exist in the common ionophilic electrode, enhances the overall performance of EDLCs with ILs.

The idea of introducing ionophobicity may help the rational design of IL-based high-performance supercapacitors or other energy storage applications in the future.

More information: Zhongdong Gan et al, Ionophobic nanopore enhancing capacitance and charging dynamics in supercapacitor with ionic liquids, Journal of Materials Chemistry A (2021). DOI: 10.1039/D1TA01818C

Journal information: Journal of Materials Chemistry A
Citation: Ionophobic electrode boosts energy storage performance (2021, May 27) retrieved 22 June 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New electrode configuration improves volumetric performance of supercapacitors


Feedback to editors