How public service media organizations can create a responsible approach to algorithmic recommendations

How public service media organizations can create a responsible approach to algorithmic recommendations
Credit: Ada Lovelace Institute

A new report, published by the Ada Lovelace Institute and co-authored by Dr. Silvia Milano from the University of Exeter, explores the development and use of recommendation systems in public service media organizations in the U.K. and Europe.

Recommendation algorithms have become an inescapable feature of how we consume content in the digital age. We experience them on a near-daily basis, whether we're streaming podcasts, browsing boxsets or reading news articles. This has benefits, but also brings ethical and societal risks, for example around echo chambers, polarization, transparency and accountability.

In this context of rapid change and innovation, the Institute's research into algorithmic recommendations within public service media organizations has identified ways to challenge the existing commercialized state-of-play established by big technology platforms.

The research also found that the idea of "public service value" needs to be redefined for the digital age and that more research into algorithmic recommendation systems is needed to address some of the ethical challenges they may pose.

Public service media organizations recognize the challenges involved in creating and using recommendation systems and many are actively working to address them.

The Ada Lovelace Institute encourages organizations to build on this work by increasing algorithmic transparency, giving users and wider society greater control and developing ways for them to participate in the research and development of these systems.

The report makes nine specific recommendations for future research, experimentation and collaboration between public service media organizations, academics, funders and regulators:

  1. Define public service value for the digital age
  2. Fund a public R&D hub for recommendation systems and responsible recommendation challenges
  3. Publish research into audience expectations of personalization
  4. Communicate and be transparent with audiences
  5. Balance user control with convenience
  6. Expand in design and evaluation
  7. Standardize metadata
  8. Create shared recommendation system resources
  9. Create and empower integrated teams

These recommendations were developed through a literature review and interviews with engineering, product and at the BBC, who partnered with the Institute on the research, as well as interviews with the European Broadcasting Union, NPO (Netherlands), ARD (Germany), VRT (Belgium), BR (Bavaria), SR (Sweden), academics, civil society and regulators.

They address some of the raised by the use of recommendation systems in public service media, and indicate further areas for research which could support the development of recommendation systems in a way that works for people and society.

Dr. Silvia Milano, lecturer in philosophy of data at the University of Exeter and a member of Egenis, the Center for the Study of Life Sciences said, "Recommender systems are the lifeblood of the internet and serve a huge number of goals—from navigating through vast pools of options, to allowing content to be discovered and businesses to ultimately succeed. Yet their operation can often be opaque, which raises several .

"By automating some editorial judgements, and increasing personalization, can help public service media to achieve important objectives, including reaching new audiences and adapting their communication for the digital age.

"We have a key opportunity to shape the public conversation around which values are enshrined in technology through our recommendation to make this part of the national AI strategy."

Carly Kind, director at the Ada Lovelace Institute, said, "There is a real opportunity for public service media to develop a new, responsible approach to algorithmic recommendation, one that works for people and society and offers an alternative to the commercial paradigms of big technology platforms.

"We encourage funders and regulators to support public service media organizations to engage in responsible innovation as they develop and use algorithms."

Citation: How public service media organizations can create a responsible approach to algorithmic recommendations (2022, November 30) retrieved 19 May 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Chinese regulators to exercise more control over algorithms


Feedback to editors