This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


trusted source


New system combines human, artificial intelligence to improve experimentation

Human-AI coworking | ORNL
The workflow of the human-AI collaborator system developed at ORNL to improve experimentation. Credit: Arpan Biswas and Rama Vasudevan/ORNL, U.S. Dept. of Energy

Though artificial intelligence decreases human error in experimentation, human experts outperform AI when identifying causation or working with small data sets.

To capitalize on AI and researcher strengths, ORNL scientists, in with National Cheng Kung University, Taiwan, and the University of Tennessee, Knoxville, developed a human-AI collaboration recommender system for improved experimentation performance.

During experiments, the system's machine learning algorithms, described in npj Computational Materials, display preliminary observations for human review. Researchers vote on data, telling the AI to show similar information or change direction, akin to a streaming service generating suggested content based on users' activity. After initial guidance, algorithms improve to illuminate with little human input.

"The foundation of this research is basically not the quantity of the data but the quality of the data that we are aiming for," ORNL's Arpan Biswas said.

The experiments and autonomous workflows were supported by the Center for Nanophase Materials Sciences, and algorithm development was supported by the MLExchange project to expand machine learning development at national laboratories.

More information: Arpan Biswas et al, A dynamic Bayesian optimized active recommender system for curiosity-driven partially Human-in-the-loop automated experiments, npj Computational Materials (2024). DOI: 10.1038/s41524-023-01191-5

Citation: New system combines human, artificial intelligence to improve experimentation (2024, February 21) retrieved 17 April 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

A theoretical model for reliability assessment of machine learning systems


Feedback to editors