A new robotic system for automated laundry

Researchers at University of Bologna and Electrolux have recently developed a new robotic system that could assist humans with one of their most common everyday chores, doing laundry. This system, introduced in a paper published ...

Electronics & Semiconductors

A diffractive neural network that can be flexibly programmed

In recent decades, machine learning and deep learning algorithms have become increasingly advanced, so much so that they are now being introduced in a variety of real-world settings. In recent years, some computer scientists ...

Computer Sciences

EventDrop: a method to augment asynchronous event data

Event sensors, such as DVS event cameras and NeuTouch tactile sensors, are sophisticated bio-inspired devices that mimic event-driven communication mechanisms naturally occurring in the brain. In contrast with conventional ...

page 1 from 40


In mathematics, computing, linguistics, and related subjects, an algorithm is a finite sequence of instructions, an explicit, step-by-step procedure for solving a problem, often used for calculation and data processing. It is formally a type of effective method in which a list of well-defined instructions for completing a task, will when given an initial state, proceed through a well-defined series of successive states, eventually terminating in an end-state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as probabilistic algorithms, incorporate randomness.

A partial formalization of the concept began with attempts to solve the Entscheidungsproblem (the "decision problem") posed by David Hilbert in 1928. Subsequent formalizations were framed as attempts to define "effective calculability" (Kleene 1943:274) or "effective method" (Rosser 1939:225); those formalizations included the Gödel-Herbrand-Kleene recursive functions of 1930, 1934 and 1935, Alonzo Church's lambda calculus of 1936, Emil Post's "Formulation 1" of 1936, and Alan Turing's Turing machines of 1936–7 and 1939.

This text uses material from Wikipedia, licensed under CC BY-SA