Engineering

A 20 kW laser system for producing high-purity crystals

High-purity semiconductor crystals are required for power electronics in electric cars or in photovoltaics. When such crystals reach a diameter of 2 inches, they become relevant for industrial applications.

Electronics & Semiconductors

Fujitsu triples the output power of gallium-nitride transistors

Fujitsu Limited and Fujitsu Laboratories Ltd. today announced that they have developed a crystal structure that both increases current and voltage in gallium-nitride (GaN) high electron mobility transistors (HEMT), effectively ...

Energy & Green Tech

Researchers investigate batteries without critical raw materials

The market for rechargeable batteries is growing rapidly, but the necessary raw materials are limited. Sodium-ion batteries, for example, could offer an alternative. A joint research group from HZB and Humboldt-Universität ...

Energy & Green Tech

Researchers develop self-healing perovskite solar cell

A team led by Prof. Hu Linhua at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (CAS) has recently developed a type of self-healing perovskite solar cell by functional combination of polyvinylpyrrolidone ...

page 7 from 10

Crystal

A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification. The word crystal is derived from the Ancient Greek word κρύσταλλος (krustallos), meaning both “ice” and “rock crystal”, from κρύος (kruos), “icy cold, frost”.

Most common metals are polycrystals. Crystals are often symmetrically intergrown to form crystal twins.

This text uses material from Wikipedia, licensed under CC BY-SA