Energy & Green Tech

Weakness is strength for this low-temperature battery

Nanoengineers at the University of California San Diego have discovered new fundamental insights for developing lithium metal batteries that perform well at ultra-low temperatures; mainly, that the weaker the electrolyte ...

Energy & Green Tech

Scientists develop novel high-energy-density lithium metal battery

Prof. Liu Zhaoping's team at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) has developed an electrolyte engineering strategy for lithium (Li) metal batteries ...

Energy & Green Tech

Healing ceramic electrolyte degraded by lithium dendrite

A research team in the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology and the Department of Chemistry at University of Calgary has investigated the effect of post-annealing ...

Energy & Green Tech

Core design strategy for fire-resistant batteries

All-solid-state batteries are next-generation batteries that can simultaneously improve the stability and capacity of existing lithium batteries. The use of non-flammable solid cathodes and electrolytes in such batteries ...

Electronics & Semiconductors

A way to make zinc batteries rechargeable

A team of researchers from China, Germany and the U.S. has developed a way to make zinc batteries rechargeable. In their paper published in the journal Science, the group describes how, by using a non-alkaline electrolyte, ...

Engineering

AI-fueled batteries

Machine learning is increasingly being used as a tool that helps researchers discover new materials and compounds for their unique design requirements. This novel approach cuts down the time researchers spend creating and ...

Energy & Green Tech

New technique extends next-generation lithium metal batteries

Electric vehicles (EVs) hold great promise for our energy-efficient, sustainable future but among their limitations is the lack of a long-lasting, high energy density battery that reduces the need to fuel up on long-haul ...

page 1 from 6

Electrolyte

In chemistry, an electrolyte is any substance containing free ions that make the substance electrically conductive. The most typical electrolyte is an ionic solution, but molten electrolytes and solid electrolytes are also possible.

Commonly, electrolytes are solutions of acids, bases or salts. Furthermore, some gases may act as electrolytes under conditions of high temperature or low pressure. Electrolyte solutions can also result from the dissolution of some biological (e.g., DNA, polypeptides) and synthetic polymers (e.g., polystyrene sulfonate), termed polyelectrolytes, which contain charged functional groups.

Electrolyte solutions are normally formed when a salt is placed into a solvent such as water and the individual components dissociate due to the thermodynamic interactions between solvent and solute molecules, in a process called solvation. For example, when table salt, NaCl, is placed in water, the salt (a solid) dissolves into its component ions, according to the dissociation reaction

It is also possible for substances to react with water producing ions, e.g., carbon dioxide gas dissolves in water to produce a solution which contains hydronium, carbonate, and hydrogen carbonate ions.

Note that molten salts can be electrolytes as well. For instance, when sodium chloride is molten, the liquid conducts electricity.

An electrolyte in a solution may be described as concentrated if it has a high concentration of ions, or dilute if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak. The properties of electrolytes may be exploited using electrolysis to extract constituent elements and compounds contained within the solution.

This text uses material from Wikipedia, licensed under CC BY-SA