Engineering

Researchers discover novel quantum effect in bilayer graphene

Theorists at The University of Texas at Dallas, along with colleagues in Germany, have for the first time observed a rare phenomenon called the quantum anomalous Hall effect in a very simple material. Previous experiments ...

Engineering

Researchers snap first image of an 'electron ice'

More than 90 years ago, physicist Eugene Wigner predicted that at low densities and cold temperatures, electrons that usually zip through materials would freeze into place, forming an electron ice, or what has been dubbed ...

Electronics & Semiconductors

Heterogeneous epitaxy of semiconductors targeting the post-Moore era

A research team led by Prof. Liu Zhiqiang from the Institute of Semiconductors of the Chinese Academy of Sciences, in cooperation with the team led by Prof. Gao Peng from Peking University and the team led by Prof. Liu Zhongfan ...

Electronics & Semiconductors

Engineers mix and match materials to make new stretchy electronics

At the heart of any electronic device is a cold, hard computer chip, covered in a miniature city of transistors and other semiconducting elements. Because computer chips are rigid, the electronic devices that they power, ...

page 1 from 2

Graphene

Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. It can be viewed as an atomic-scale chicken wire made of carbon atoms and their bonds. The name comes from GRAPHITE + -ENE; graphite itself consists of many graphene sheets stacked together.

The carbon-carbon bond length in graphene is approximately 0.142 nm. Graphene is the basic structural element of some carbon allotropes including graphite, carbon nanotubes and fullerenes. It can also be considered as an infinitely large aromatic molecule, the limiting case of the family of flat polycyclic aromatic hydrocarbons called graphenes.

Measurements have shown that graphene has a breaking strength 200 times greater than steel, making it the strongest material ever tested.

This text uses material from Wikipedia, licensed under CC BY-SA