Engineering

Anti-solar cells: A photovoltaic cell that works at night

What if solar cells worked at night? That's no joke, according to Jeremy Munday, professor in the Department of Electrical and Computer Engineering at UC Davis. In fact, a specially designed photovoltaic cell could generate ...

Engineering

System provides cooling with no electricity

Imagine a device that can sit outside under blazing sunlight on a clear day, and without using any power cool things down by more than 23 degrees Fahrenheit (13 degrees Celsius). It almost sounds like magic, but a new system ...

Robotics

Toy transformers and real-life whales inspire biohybrid robot

Drawing inspiration from biology and the toy shelf, researchers at Thayer School of Engineering at Dartmouth College and City University of Hong Kong have developed a swimming robot with a light-controlled cellular engine ...

Engineering

Smart windows could combine solar panels and TVs too

Imagine standing in front of a wall of windows, surveying the view. You hear someone enter the room behind you. You turn. "Welcome," you say. "Here is the video I wanted to show you." At the press of a button, the view vanishes ...

page 5 from 6

Infrared

Infrared (IR) radiation is electromagnetic radiation whose wavelength is longer than that of visible light (400-700 nm), but shorter than that of terahertz radiation (100 µm - 1 mm) and microwaves (~30,000 µm). Infrared radiation spans roughly three orders of magnitude (750 nm and 100 µm).

Direct sunlight has a luminous efficacy of about 93 lumens per watt of radiant flux, which includes infrared (47% share of the spectrum), visible (46%), and ultra-violet (only 6%) light. Bright sunlight provides luminance of approximately 100,000 candela per square meter at the Earth's surface.

This text uses material from Wikipedia, licensed under CC BY-SA