Electronics & Semiconductors

Volcanic spring water helps researchers make plastic electronics

When you think of how to make electronic components, water probably doesn't top your list of raw materials. Nevertheless, in a study recently published in Journal of Water Chemistry and Technology, researchers from the University ...

Energy & Green Tech

Tuning thermoelectric materials for efficient power generation

In times when energy is scarce and sustainable ways of energy production are being explored, thermoelectric materials are being considered for power generation to transform waste heat into electricity. However, to make this ...

Hardware

Complex oxides could power the computers of the future

As the evolution of standard microchips is coming to an end, scientists are looking for a revolution. The big challenges are to design chips that are more energy efficient and to design devices that combine memory and logic ...

page 3 from 7

Microscopy

Microscopy is the technical field of using microscopes to view samples or objects. There are three well-known branches of microscopy, optical, electron and scanning probe microscopy.

Optical and electron microscopy involve the diffraction, reflection, or refraction of electromagnetic radiation/electron beam interacting with the subject of study, and the subsequent collection of this scattered radiation in order to build up an image. This process may be carried out by wide-field irradiation of the sample (for example standard light microscopy and transmission electron microscopy) or by scanning of a fine beam over the sample (for example confocal laser scanning microscopy and scanning electron microscopy). Scanning probe microscopy involves the interaction of a scanning probe with the surface or object of interest. The development of microscopy revolutionized biology and remains an essential tool in that science, along with many others including materials science and numerous engineering disciplines.

This text uses material from Wikipedia, licensed under CC BY-SA