Computer Sciences

Designing new quantum materials on the computer

How do you find novel materials with very specific properties—for example, special electronic properties which are needed for quantum computers? This is usually a very complicated task: various compounds are created, in ...

Computer Sciences

Three questions about quantum computing and secure communications

A radically different type of computing technology under development, known as quantum computing, could in theory decode secure communications and jeopardize military communications, critical infrastructure, and financial ...

Computer Sciences

Quantum computer programming for dummies

For would-be quantum programmers scratching their heads over how to jump into the game as quantum computers proliferate and become publicly accessible, a new beginner's guide provides a thorough introduction to quantum algorithms ...

page 1 from 7

Quantum computer

A quantum computer is a device for computation that makes direct use of quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. The basic principle behind quantum computation is that quantum properties can be used to represent data and perform operations on these data.

Although quantum computing is still in its infancy, experiments have been carried out in which quantum computational operations were executed on a very small number of qubits (quantum binary digits). Both practical and theoretical research continues with interest, and many national government and military funding agencies support quantum computing research to develop quantum computers for both civilian and national security purposes, such as cryptanalysis.

If large-scale quantum computers can be built, they will be able to solve certain problems much faster than any of our current classical computers (for example Shor's algorithm). Quantum computers are different from other computers such as DNA computers and traditional computers based on transistors. Some computing architectures such as optical computers may use classical superposition of electromagnetic waves. Without some specifically quantum mechanical resources such as entanglement, it is conjectured that an exponential advantage over classical computers is not possible.

This text uses material from Wikipedia, licensed under CC BY-SA