Computer Sciences

Finnish researchers claim quantum computing breakthrough

Scientists have created a device which could make it easier to harness super-fast quantum computers for real-world applications, a team at Finland's Aalto University said on Wednesday.

Computer Sciences

Scientists use reinforcement learning to train quantum algorithm

Recent advancements in quantum computing have driven the scientific community's quest to solve a certain class of complex problems for which quantum computers would be better suited than traditional supercomputers. To improve ...

Computer Sciences

AI automatic tuning delivers step forward in quantum computing

Researchers at Oxford University, in collaboration with DeepMind, University of Basel and Lancaster University, have created a machine learning algorithm that interfaces with a quantum device and 'tunes' it faster than human ...

Computer Sciences

The first intuitive programming language for quantum computers

Programming quantum computers is becoming easier: computer scientists at ETH Zurich have designed the first programming language that can be used to program quantum computers as simply, reliably and safely as classical computers. ...

Electronics & Semiconductors

'One-way' electronic devices enter the mainstream

Waves, whether they are light waves, sound waves, or any other kind, travel in the same manner in forward and reverse directions—this is known as the principle of reciprocity. If we could route waves in one direction only—breaking ...

Computer Sciences

Google releases quantum computing library

Google announced Monday that it is making available an open-source library for quantum machine-learning applications.

Computer Sciences

Could quantum computing help beat the next coronavirus?

Quantum computing isn't yet far enough along that it could have helped curb the spread of this coronavirus outbreak. But this emerging field of computing will almost certainly help scientists and researchers confront future ...

page 1 from 4

Quantum computer

A quantum computer is a device for computation that makes direct use of quantum mechanical phenomena, such as superposition and entanglement, to perform operations on data. The basic principle behind quantum computation is that quantum properties can be used to represent data and perform operations on these data.

Although quantum computing is still in its infancy, experiments have been carried out in which quantum computational operations were executed on a very small number of qubits (quantum binary digits). Both practical and theoretical research continues with interest, and many national government and military funding agencies support quantum computing research to develop quantum computers for both civilian and national security purposes, such as cryptanalysis.

If large-scale quantum computers can be built, they will be able to solve certain problems much faster than any of our current classical computers (for example Shor's algorithm). Quantum computers are different from other computers such as DNA computers and traditional computers based on transistors. Some computing architectures such as optical computers may use classical superposition of electromagnetic waves. Without some specifically quantum mechanical resources such as entanglement, it is conjectured that an exponential advantage over classical computers is not possible.

This text uses material from Wikipedia, licensed under CC BY-SA