Computer Sciences

Using quantum computing to protect AI from attack

Machine learning is a field of artificial intelligence (AI) where computer models become experts in various tasks by consuming large amounts of data. This is instead of a human explicitly programming this level of expertise.

Engineering

Trajectoids: Creating a shape that rolls along a desired path

Normally, when we think of a rolling object, we tend to imagine a torus (like a bicycle wheel) or a sphere (like a tennis ball) that will always follow a straight path when rolling. However, the world of mathematics and science ...

Energy & Green Tech

Scientists elevate quantum dot solar cell world record

Researchers at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) established a new world efficiency record for quantum dot solar cells, at 13.4 percent.

Engineering

New quantum sensing technique reveals magnetic connections

Say you notice a sudden drop in temperature on both your patio and kitchen thermometers. At first, you think it's because of a cold snap, so you crank up the heat in your home. Then you realize that while the outside has ...

Machine learning & AI

Simple data gets the most out of quantum machine learning

New theoretical research proves that machine learning on quantum computers requires far simpler data than previously believed. The finding paves a path to maximizing the usability of today's noisy, intermediate-scale quantum ...

Computer Sciences

Could quantum computing help beat the next coronavirus?

Quantum computing isn't yet far enough along that it could have helped curb the spread of this coronavirus outbreak. But this emerging field of computing will almost certainly help scientists and researchers confront future ...

Machine learning & AI

Will AI take over? Quantum theory suggests otherwise

Will artificial intelligence one day surpass human thinking? The rapid progress of AI, coupled with our standard fear of machines, has raised concerns that its abilities will one day start to grow uncontrollably, eventually ...

page 11 from 21

Quantum

In physics, a quantum (plural: quanta) is an indivisible entity of a quantity that has the same units as the Planck constant and is related to both energy and momentum of elementary particles of matter (called fermions) and of photons and other bosons. The word comes from the Latin "quantus", for "how much." Behind this, one finds the fundamental notion that a physical property may be "quantized", referred to as "quantization". This means that the magnitude can take on only certain discrete numerical values, rather than any value, at least within a range. There is a related term of quantum number.

A photon is often referred to as a "light quantum". The energy of an electron bound to an atom (at rest) is said to be quantized, which results in the stability of atoms, and of matter in general. But these terms can be a little misleading, because what is quantized is this Planck's constant quantity whose units can be viewed as either energy multiplied by time or momentum multiplied by distance.

Usually referred to as quantum "mechanics", it is regarded by virtually every professional physicist as the most fundamental framework we have for understanding and describing nature at the infinitesimal level, for the very practical reason that it works. It is "in the nature of things", not a more or less arbitrary human preference.

This text uses material from Wikipedia, licensed under CC BY-SA