Robotics

Mind-controlled robots now one step closer

Tetraplegic patients are prisoners of their own bodies, unable to speak or perform the slightest movement. Researchers have been working for years to develop systems that can help these patients carry out some tasks on their ...

Robotics

A face-following robot arm with emotion detection

Researchers at Universitat Autònoma de Barcelona (UAB) have recently developed a face-following robotic arm with emotion detection inspired by Pixar Animation Studios' Luxo Jr. lamp. This robot was presented by Vernon Stanley ...

Machine learning & AI

Using artificial intelligence to enhance complex systems

EPFL researchers have invented a way of automatically working out what data needs to be put into a complex system—such as a fiber optic network—in order to get the desired result. Their solution could prove especially ...

page 3 from 14

Robotic arm

A robotic arm is a robot manipulator, usually programmable, with similar functions to a human arm. The links of such a manipulator are connected by joints allowing either rotational motion (such as in an articulated robot) or translational (linear) displacement. The links of the manipulator can be considered to form a kinematic chain. The business end of the kinematic chain of the manipulator is called the end effector and it is analogous to the human hand. The end effector can be designed to perform any desired task such as welding, gripping, spinning etc., depending on the application. For example robot arms in automotive assembly lines perform a variety of tasks such as welding and parts rotation and placement during assembly.

In space the Space Shuttle Remote Manipulator System also known as Canadarm or SSRMS and its successor Canadarm2 are examples of multi degree of freedom robotic arms that have been used to perform a variety of tasks such as inspections of the Space Shuttle using a specially deployed boom with cameras and sensors attached at the end effector and satellite deployment and retrieval manoeuvres from the cargo bay of the Space Shuttle.

The robot arms can be autonomous or controlled manually and can be used to perform a variety of tasks with great accuracy.

The robotic arm can be fixed or mobile (i.e. wheeled) and can be designed for industrial or home applications.

This text uses material from Wikipedia, licensed under CC BY-SA