Business

Kansas commits $304M to chip plant to lure federal funds

Kansas plans to give $304 million in taxpayer-funded incentives to a semiconductor company in its largest city to build a huge new factory, but the project won't go forward without funds the U.S. government has promised for ...

Electronics & Semiconductors

Two technical breakthroughs make high-quality 2D materials possible

Researchers have been looking to replace silicon in electronics with materials that provide a higher performance and lower power consumption while also having scalability. An international team is addressing that need by ...

Electronics & Semiconductors

Developing thermally evaporated environment-friendly semiconductors

Semiconductors are indispensable products in our lives, used in everything from smartphones and computers to vehicles. However, their development increasingly poses a problem: as semiconductors improve in terms of function ...

page 1 from 23

Semiconductor

A semiconductor is a material that has a resistivity value between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical field. Devices made from semiconductor materials are the foundation of modern electronics, including radio, computers, telephones, and many other devices. Semiconductor devices include the transistor, solar cells, many kinds of diodes including the light-emitting diode, the silicon controlled rectifier, and digital and analog integrated circuits. Solar photovoltaic panels are large semiconductor devices that directly convert light energy into electrical energy. In a metallic conductor, current is carried by the flow of electrons. In semiconductors, current can be carried either by the flow of electrons or by the flow of positively-charged "holes" in the electron structure of the material.

Silicon is used to create most semiconductors commercially. Dozens of other materials are used, including germanium, gallium arsenide, and silicon carbide. A pure semiconductor is often called an “intrinsic” semiconductor. The conductivity, or ability to conduct, of semiconductor material can be drastically changed by adding other elements, called “impurities” to the melted intrinsic material and then allowing the melt to solidify into a new and different crystal. This process is called "doping".

This text uses material from Wikipedia, licensed under CC BY-SA