New method helps keep an eye on electromagnetic coils degradation

electromagnetic coil
Credit: Unsplash/CC0 Public Domain

Electromagnetic coils are widely used components in many applications and systems, including solenoids, motors and transformers. However, coil insulation systems are failure-prone, especially under excessive thermal stresses, leading to unexpected machine shutdown.

With the wide use of low-voltage (under 1kV) electrical rotating machines in new applications, especially in , the reliability of the low-voltage insulation systems in rotating machines has become a critical issue and requires technical-conditions-monitoring to avoid unexpected shutdown of machines that incorporate electromagnetic coils.

A team of researchers from Shenyang Institute of Automation of the Chinese Academy of Sciences and University of Maryland recently provided a possible solution for better achieving the monitoring of insulation systems used in low-voltage electromagnetic coils under thermal loading conditions. They investigated degradation monitoring of coil insulation systems under thermal loading conditions from a creep point of view. Their finding was published in Sensors.

Long-term thermal and compressive stresses placed on the insulation during coil operation create the necessary conditions for the occurrence of inter-turn insulation creep. Therefore, the researchers hypothesized a coil creep degradation mechanism during a coil incipient degradation phase. They also developed a mapping method from coil electrical parameters to inter-turn insulation creep deformation based on circuit theories and optimization methods.

To prove the developed method, the researchers performed thermally accelerated tests. Polymer creep curves obtained by outer radius measurement results of magnet wires and comparison between mapped and measured creep deformation during the thermally accelerated tests validates the proposed creep degradation mechanism and mapping method.

"This study bridges the gap between the micro-level and macro-level changes during the incipient insulation degradation process, and we established a for insulation degradation monitoring by converting the electrical monitoring parameter to coil insulation health status," said Prof. Wang Kai, the corresponding author of the paper.

The finding helps to reveal the practical physical meaning of coil high-frequency electrical parameters and enhance the prognostic ability of existing high-frequency electrical parameter based monitoring methods, which presents opportunities for predictive maintenance of that incorporate electromagnetic coils.

Explore further

Metal coordination enables high-temperature, creep-resistant polyimine vitrimer preparation

More information: Kai Wang et al. Degradation Monitoring of Insulation Systems Used in Low-Voltage Electromagnetic Coils under Thermal Loading Conditions from a Creep Point of View, Sensors (2020). DOI: 10.3390/s20133696
Citation: New method helps keep an eye on electromagnetic coils degradation (2020, July 7) retrieved 21 October 2021 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors