Engineering

The novel chemistry behind ultra-high power density batteries

Mohammad Asadi, assistant professor of chemical engineering at Illinois Institute of Technology, has published a paper in the journal Science describing the chemistry behind his novel lithium-air battery design. The insights ...

Automotive

Machine learning to optimize traffic and reduce pollution

Applying artificial intelligence to self-driving cars to smooth traffic, reduce fuel consumption, and improve air quality predictions may sound like the stuff of science fiction, but researchers at the Department of Energy's ...

Energy & Green Tech

Water vapor in the atmosphere may be prime renewable energy source

The search for renewable energy sources, which include wind, solar, hydroelectric dams, geothermal, and biomass, has preoccupied scientists and policymakers alike, due to their enormous potential in the fight against climate ...

Energy & Green Tech

Extending the life of low-cost, compact, lightweight batteries

Metal-air batteries are one of the lightest and most compact types of batteries available, but they can have a major limitation: When not in use, they degrade quickly, as corrosion eats away at their metal electrodes. Now, ...

Energy & Green Tech

Researchers create new zinc-air pouch cells

Zinc-air batteries (ZABs) are among the most promising next-generation battery technologies due to their many advantageous characteristics. Most notably, these batteries have unique half-open structures, a significant theoretical ...

page 3 from 40

Earth's atmosphere

The Earth's atmosphere is a layer of gases surrounding the planet Earth that is retained by the Earth's gravity. It has a mass of about five quadrillion metric tons. Dry air contains roughly (by volume) 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.038% carbon dioxide, and trace amounts of other gases. Air also contains a variable amount of water vapor, on average around 1%. The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night.

There is no definite boundary between the atmosphere and outer space. It slowly becomes thinner and fades into space. An altitude of 120 km (75 mi) marks the boundary where atmospheric effects become noticeable during atmospheric reentry. The Kármán line, at 100 km (62 mi), is also frequently regarded as the boundary between atmosphere and outer space. Three quarters of the atmosphere's mass is within 11 km (6.8 mi; 36,000 ft) of the surface.

This text uses material from Wikipedia, licensed under CC BY-SA