Electronics & Semiconductors

A cool advance in thermoelectric conversion

More than two-thirds of the energy used worldwide is ultimately ejected as "waste heat." Within that reservoir of discarded energy lies a great and largely untapped opportunity, claim scientists in MIT's Department of Nuclear ...

Energy & Green Tech

Wearable health tech gets efficiency upgrade

North Carolina State University engineers have demonstrated a flexible device that harvests the heat energy from the human body to monitor health. The device surpasses all other flexible harvesters that use body heat as the ...

Energy & Green Tech

Next generation anode to improve lithium-ion batteries

Researchers at the University of California, Riverside have created a new silicon-tin nanocomposite anode that could lead to lithium-ion batteries that can be charged and discharged more times before they reach the end of ...

page 5 from 7

Electrical conductivity

Electrical conductivity or specific conductance is a measure of a material's ability to conduct an electric current. When an electrical potential difference is placed across a conductor, its movable charges flow, giving rise to an electric current. The conductivity σ is defined as the ratio of the current density to the electric field strength :

It is also possible to have materials in which the conductivity is anisotropic, in which case σ is a 3×3 matrix (or more technically a rank-2 tensor) which is generally symmetric.

Conductivity is the reciprocal (inverse) of electrical resistivity, ρ, and has the SI units of siemens per metre (S·m-1):

Electrical conductivity is commonly represented by the Greek letter σ, but κ (esp. in electrical engineering science) or γ are also occasionally used.

An EC meter is normally used to measure conductivity in a solution.

This text uses material from Wikipedia, licensed under CC BY-SA