Engineering

Giving keener 'electric eyesight' to autonomous vehicles

Autonomous vehicles relying on light-based image sensors often struggle to see through blinding conditions, such as fog. But MIT researchers have developed a sub-terahertz-radiation receiving system that could help steer ...

Engineering

All solid-state LiDAR sensor that sees 360 degrees

The LiDAR sensor, which recognizes objects by projecting light onto them, functions as eyes for autonomous vehicles by helping to identify the distance to surrounding objects and speed or direction of the vehicle. To detect ...

Engineering

How eye imaging technology could help robots and cars see better

Even though robots don't have eyes with retinas, the key to helping them see and interact with the world more naturally and safely may rest in optical coherence tomography (OCT) machines commonly found in the offices of ophthalmologists.

Robotics

Developing a crowd-friendly robotic wheelchair

Robotic wheelchairs may soon be able to move through crowds smoothly and safely. As part of CrowdBot, an EU-funded project, EPFL researchers are exploring the technical, ethical and safety issues related to this kind of technology. ...

page 1 from 4

LIDAR

LIDAR (Light Detection And Ranging, also LADAR) is an optical remote sensing technology that can measure the distance to, or other properties of a target by illuminating the target with light, often using pulses from a laser. LIDAR technology has application in geomatics, archaeology, geography, geology, geomorphology, seismology, forestry, remote sensing and atmospheric physics, as well as in airborne laser swath mapping (ALSM), laser altimetry and LIDAR contour mapping.

The acronym LADAR (Laser Detection and Ranging) is often used in military contexts. The term "laser radar" is sometimes used, even though LIDAR does not employ microwaves or radio waves and therefore is not radar in the strict sense of the word.

This text uses material from Wikipedia, licensed under CC BY-SA