This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

proofread

3D-printed bend-based frictionless gear mechanism for precise rotation

3D-printed bend-based mechanism
Credit: CSEM

It might look like some bizarre alien artwork but this is actually a frictionless gear mechanism, 3D-printed all in one in high-performance stainless steel, designed to enable the precise rotation of items such as satellite thrusters, sensors, telescope lenses or mirrors.

Standard moving parts in involve friction, and therefore require some kind of lubrication that can potentially lead to unwanted contamination of delicate systems, while also inducing ongoing wear and tear.

By contrast, this is an example of a "compliant mechanism" that transmit force through bending, or "elastic deformation," such as bag fasteners or bows and arrows. Incorporating 24 bendable blades, of which 16 are interlocking, the design serves to reduce the turning force induced upon it by a factor of 10, to allow very fine control of rotary motion.

This Compliant Rotation Reduction Mechanism was designed by CSEM in Switzerland, with Swiss company 3D Precision SA undertaking the 3D printing while its performance testing was undertaken by Almatech SA, as part of an ESA Technology Development Element activity.

Credit: CSEMtechnologies

Citation: 3D-printed bend-based frictionless gear mechanism for precise rotation (2023, July 21) retrieved 14 June 2024 from https://techxplore.com/news/2023-07-3d-printed-bend-based-frictionless-gear-mechanism.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Mechanical engineering meets electromagnetics to enable future technology

12 shares

Feedback to editors