Energy & Green Tech

Battery technology achieves record high sodium-metal cycling rates

While lithium-ion batteries currently dominate the industry, serious concern remains about the limited availability of lithium used in these batteries. Conversely, sodium-ion batteries provide a more sustainable alternative ...

Energy & Green Tech

Boosting thermal energy storage with polyelectrolytes

Oak Ridge National Laboratory researchers have demonstrated that an additive made from polymers and electrolytes improves the thermal performance and stability of salt hydrate phase change materials, or PCMs, a finding that ...

Energy & Green Tech

A new blueprint for designing high-performance batteries

A team of scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory discovered an intriguing cooperative behavior that occurs among complex mixtures of components in electrolytes in batteries. Electrolytes ...

page 4 from 24

Electrolyte

In chemistry, an electrolyte is any substance containing free ions that make the substance electrically conductive. The most typical electrolyte is an ionic solution, but molten electrolytes and solid electrolytes are also possible.

Commonly, electrolytes are solutions of acids, bases or salts. Furthermore, some gases may act as electrolytes under conditions of high temperature or low pressure. Electrolyte solutions can also result from the dissolution of some biological (e.g., DNA, polypeptides) and synthetic polymers (e.g., polystyrene sulfonate), termed polyelectrolytes, which contain charged functional groups.

Electrolyte solutions are normally formed when a salt is placed into a solvent such as water and the individual components dissociate due to the thermodynamic interactions between solvent and solute molecules, in a process called solvation. For example, when table salt, NaCl, is placed in water, the salt (a solid) dissolves into its component ions, according to the dissociation reaction

It is also possible for substances to react with water producing ions, e.g., carbon dioxide gas dissolves in water to produce a solution which contains hydronium, carbonate, and hydrogen carbonate ions.

Note that molten salts can be electrolytes as well. For instance, when sodium chloride is molten, the liquid conducts electricity.

An electrolyte in a solution may be described as concentrated if it has a high concentration of ions, or dilute if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak. The properties of electrolytes may be exploited using electrolysis to extract constituent elements and compounds contained within the solution.

This text uses material from Wikipedia, licensed under CC BY-SA