Energy & Green Tech

Using AI to pinpoint hidden sources of clean energy underground

As efforts to transition away from fossil fuels strengthen the hunt for new sources of low-carbon energy, scientists have developed a deep learning model to scan the Earth for surface expressions of subsurface reservoirs ...

Energy & Green Tech

A new system for producing green hydrogen cheaply and efficiently

What does it take to produce green hydrogen more efficiently and cheaply? Apparently, small ruthenium particles and a solar-powered system for water electrolysis. This is the solution proposed by a joint team involving the ...

Engineering

Converting a steel mill to climate-neutral steel production

Steel production causes significant emissions of carbon dioxide. To decarbonize steel production and its high carbon dioxide emissions, Fraunhofer researchers, TS ELINO GmbH and Salzgitter AG are working on converting an ...

Machine learning & AI

Artificial intelligence paves way for new medicines

A team of researchers from LMU, ETH Zurich, and Roche Pharma Research and Early Development (pRED) Basel has used artificial intelligence (AI) to develop an innovative method that predicts the optimal method for synthesizing ...

Energy & Green Tech

Syngas photocatalysis made easy

A study published in the journal PNAS Nexus reports a photocatalyst to enable solar-driven syngas production from methane steam reforming—a possible bridge fuel to a post-carbon energy world.

page 5 from 40

Hydrogen

Hydrogen (pronounced /ˈhaɪdrədʒən/) is the chemical element with atomic number 1. It is represented by the symbol H. At standard temperature and pressure, hydrogen is a colorless, odorless, nonmetallic, tasteless, highly flammable diatomic gas with the molecular formula H2. With an atomic weight of 1.00794 u, hydrogen is the lightest element.

Hydrogen is the most abundant chemical element, constituting roughly 75% of the universe's elemental mass. Stars in the main sequence are mainly composed of hydrogen in its plasma state. Elemental hydrogen is relatively rare on Earth. Industrial production is from hydrocarbons such as methane with most being used "captively" at the production site. The two largest uses are in fossil fuel processing (e.g., hydrocracking) and ammonia production mostly for the fertilizer market. Hydrogen may be produced from water by electrolysis at substantially greater cost than production from natural gas.

The most common isotope of hydrogen is protium (name rarely used, symbol H) with a single proton and no neutrons. In ionic compounds it can take a negative charge (an anion known as a hydride and written as H−), or as a positively-charged species H+. The latter cation is written as though composed of a bare proton, but in reality, hydrogen cations in ionic compounds always occur as more complex species. Hydrogen forms compounds with most elements and is present in water and most organic compounds. It plays a particularly important role in acid-base chemistry with many reactions exchanging protons between soluble molecules. As the only neutral atom with an analytic solution to the Schrödinger equation, the study of the energetics and bonding of the hydrogen atom played a key role in the development of quantum mechanics.

Hydrogen is important in metallurgy as it can embrittle many metals, complicating the design of pipelines and storage tanks. Hydrogen is highly soluble in many rare earth and transition metals and is soluble in both nanocrystalline and amorphous metals. Hydrogen solubility in metals is influenced by local distortions or impurities in the crystal lattice.

This text uses material from Wikipedia, licensed under CC BY-SA