Computer Sciences

Is quantum computing a cybersecurity threat?

Cybersecurity researchers and analysts are rightly worried that a new type of computer, based on quantum physics rather than more standard electronics, could break most modern cryptography. The effect would be to render communications ...

Engineering

Using quantum physics to secure wireless devices

From access cards and key fobs to Bluetooth speakers, the security of communication between wireless devices is critical to maintaining privacy and preventing theft. Unfortunately, these tools are not foolproof and information ...

Electronics & Semiconductors

AI may soon predict how electronics fail

Think of them as master Lego builders, only at an atomic scale. Engineers at CU Boulder have taken a major step forward in combing advanced computer simulations with artificial intelligence to try to predict how electronics, ...

Computer Sciences

Randomness in quantum machines helps verify their accuracy

In quantum computers and other experimental quantum systems, information spreads around the devices and quickly becomes scrambled like dice in a game of Boggle. This scrambling process happens as the basic units of the system, ...

Engineering

Trajectoids: Creating a shape that rolls along a desired path

Normally, when we think of a rolling object, we tend to imagine a torus (like a bicycle wheel) or a sphere (like a tennis ball) that will always follow a straight path when rolling. However, the world of mathematics and science ...

Robotics

Efforts to deliver the first drone-based, mobile quantum network

Hacked bank and Twitter accounts, malicious power outages and attempts to tamper with medical records threaten the security of the nation's health, money, energy, society and infrastructure. Harnessing the laws of nature—namely ...

Computer Sciences

Google's researchers explore quantum annealing advantages

Since 2013, Google and NASA have worked on code designed for a quantum machine bought from D-Wave. Google Research Blog said Tuesday that Quantum AI lab researchers report in a new paper that has yet to be peer-reviewed that ...

page 2 from 3

Quantum mechanics

Quantum mechanics is a set of principles underlying the most fundamental known description of all physical systems at the submicroscopic scale (at the atomic level). Notable among these principles are simultaneous wave-like and particle-like behavior of matter and radiation ("Wave–particle duality"), and the prediction of probabilities in situations where classical physics predicts certainties. Classical physics can be derived as a good approximation to quantum physics, typically in circumstances with large numbers of particles. Thus quantum phenomena are particularly relevant in systems whose dimensions are close to the atomic scale, such as molecules, atoms, electrons, protons and other subatomic particles. Exceptions exist for certain systems which exhibit quantum mechanical effects on macroscopic scale; superfluidity is one well-known example. Quantum theory provides accurate descriptions for many previously unexplained phenomena such as black body radiation and stable electron orbits. It has also given insight into the workings of many different biological systems, including smell receptors and protein structures.

This text uses material from Wikipedia, licensed under CC BY-SA