Internet

Mathematicians build an algorithm for 5G network slicing

One of the features of 5G networks is so-called slicing, which is segmentation of the network. Physically, the network remains the same but is logically divided into slices depending on current requests. This approach guarantees ...

Energy & Green Tech

New method monitors grid stability with hydropower project signals

Scientists at Oak Ridge National Laboratory and the University of Tennessee, Knoxville, have developed an algorithm to predict electric grid stability using signals from pumped storage hydropower projects. The method provides ...

page 4 from 40

Algorithm

In mathematics, computing, linguistics, and related subjects, an algorithm is a finite sequence of instructions, an explicit, step-by-step procedure for solving a problem, often used for calculation and data processing. It is formally a type of effective method in which a list of well-defined instructions for completing a task, will when given an initial state, proceed through a well-defined series of successive states, eventually terminating in an end-state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as probabilistic algorithms, incorporate randomness.

A partial formalization of the concept began with attempts to solve the Entscheidungsproblem (the "decision problem") posed by David Hilbert in 1928. Subsequent formalizations were framed as attempts to define "effective calculability" (Kleene 1943:274) or "effective method" (Rosser 1939:225); those formalizations included the Gödel-Herbrand-Kleene recursive functions of 1930, 1934 and 1935, Alonzo Church's lambda calculus of 1936, Emil Post's "Formulation 1" of 1936, and Alan Turing's Turing machines of 1936–7 and 1939.

This text uses material from Wikipedia, licensed under CC BY-SA