Energy & Green Tech

Solid-state batteries line up for better performance

Solid-state batteries pack a lot of energy into a small space, but their electrodes are not good at keeping in touch with their electrolytes. Liquid electrolytes reach every nook and cranny of an electrode to spark energy, ...

Robotics

Scientists develop a soft robot that mimics a spider's leg

Researchers Indrek Must and Kadri-Ann Valdur of the Institute of Technology of the University of Tartu have created a robot leg modeled after the leg of a cucumber spider. The soft robot created in cooperation with the Italian ...

Energy & Green Tech

Setting the stage for solid-state battery success

Battery researchers and other engineers from University of California San Diego, with collaboration from the LG Energy Solution, have published a forward-looking perspective article in the journal Joule.

Energy & Green Tech

Building better batteries

Lithium-ion batteries, widely used in devices ranging from electric cars to iPhones, are composed of a cathode made from a positively charged lithium compound and an anode composed of negatively charged carbon. Ideally, anodes ...

page 11 from 26

Electrolyte

In chemistry, an electrolyte is any substance containing free ions that make the substance electrically conductive. The most typical electrolyte is an ionic solution, but molten electrolytes and solid electrolytes are also possible.

Commonly, electrolytes are solutions of acids, bases or salts. Furthermore, some gases may act as electrolytes under conditions of high temperature or low pressure. Electrolyte solutions can also result from the dissolution of some biological (e.g., DNA, polypeptides) and synthetic polymers (e.g., polystyrene sulfonate), termed polyelectrolytes, which contain charged functional groups.

Electrolyte solutions are normally formed when a salt is placed into a solvent such as water and the individual components dissociate due to the thermodynamic interactions between solvent and solute molecules, in a process called solvation. For example, when table salt, NaCl, is placed in water, the salt (a solid) dissolves into its component ions, according to the dissociation reaction

It is also possible for substances to react with water producing ions, e.g., carbon dioxide gas dissolves in water to produce a solution which contains hydronium, carbonate, and hydrogen carbonate ions.

Note that molten salts can be electrolytes as well. For instance, when sodium chloride is molten, the liquid conducts electricity.

An electrolyte in a solution may be described as concentrated if it has a high concentration of ions, or dilute if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak. The properties of electrolytes may be exploited using electrolysis to extract constituent elements and compounds contained within the solution.

This text uses material from Wikipedia, licensed under CC BY-SA